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Outline

• Parallel computing and computational complexity

• Parallel complexity of models in statistical physical

• Random circuit value problem: complexity of solving 
and sampling
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Parallel Random Access 
Machine

1 2 3 m

Controller

Global Memory

Processors

PRAM
•Each processor runs the 
same program but has a 
distinct label 

•Each processor 
communicates with any 
memory cell in a single time 
step.

•Primary resources:
Parallel time

Number of processors
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Parallel Computing
Adding n numbers can be carried out in O(log n) steps 

using O(n) processors.  
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ΣXi

log n

Connected components of a graph can be found in 
O(log2n) steps using n2 processors.
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Complexity Classes and 
P-completeness

•P is the class of feasible problems: solvable with 

polynomial work.
•NC is the class of problems efficiently solved in 

parallel (polylog time and polynomial work, NC ⊆ P).

•Are there feasible problems that cannot be solved 
efficiently in parallel (P≠NC)?

•P-complete problems are the hardest problems in P to 

solve in parallel. It is believed they are inherently 

sequential: not solvable in polylog time.
•The Circuit Value Problem is P-complete.
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Sampling Complexity

•Models and algorithms in 
statistical physics convert 
random bits into typical 
system states.

Typical System State

Random Bits

PRAM Algorithm
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Diffusion Limited Aggregation

•Particles added one at a time 
with sticking probabilities given 
by the solution of Laplace’s 
equation.
•Self-organized fractal object

df=1.715…  (2D)
•Physical systems:

Fluid flow in porous media
Electrodeposition
Bacterial colonies

Witten and Sander, PRL 47, 1400 (1981)
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Random Walk Dynamics for DLA
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#1
#3

#2 #1 #3
#2

Parallel dynamics ignores 
interference between 1 and 3

Sequential dynamics

The Problem with Parallelizing DLA
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Caveats:
1. P≠NC not proven
2. Average case may be easier than worst case
3. Alternative dynamics may be faster than random walk dynamics for sampling DLA

Complexity of DLA
Theorem: Determining the shape of an aggregate from the 
random walks of the constituent particles is a P-hard problem.

Proof idea:  Reduce the Circuit Value Problem to DLA dynamics.

a b c

input 1 input 2

power

output

dGadet for NOR gate
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Sequential models with polylog 
parallel complexity

Eden growth

Invasion percolation

•Eden growth
•Invasion percolation
•Scale free networks 
•Ballistic deposition
•Bak-Sneppen model
•Internal DLA

Scale free network
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Internal DLA
Particles start at the origin, random walk and stick where they 
first leaves the cluster.

•Shape approaches a circle with logarithmic fluctuations.
•P-completeness proof fails. (However, IDLA is CC-complete)
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Parallel Algorithm for IDLA
1. Start with seed particle at the origin and N walk trajectories
2. Place particles at expected positions along their trajectories.
3. Iteratively move particles until holes and multiple occupancies are 

eliminated

Average parallel time 
polylogarthmic or 
possibly a small power in 
N. 

Cluster of 2500 particles made in 6 parallel steps.

1

2 4

3 5

6

C. Moore and JM, J. Stat. Phys. 99, 661 (2000)
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Random Monotone CVP
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•Circuit arranged in levels with W 
gates on a level and D levels.
•       =fraction of TRUE inputs. 
•  p   =fraction of OR gates.
•Gates at level n+1 randomly take k 
inputs from gates at level n (with 
replacement).

τ0

Monotone CVP is P-complete but 
how hard is it on average to 
evaluate the circuit in parallel?
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• Let     be the expected fraction of gates 
evaluating to TRUE at level n.

Recursion relations, k=2
τn

τn+1 = p(1− (1− τn)2) + (1− p)τ2
n

�

τ = 1τ = 0Absorbing fixed points at             and             .       
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• Let     be the expected fraction of gates 
evaluating to TRUE at level n.

Recursion relations, k=2
τn

τn+1 = p(1− (1− τn)2) + (1− p)τ2
n

�

0 1
τn

p < 1/2

0 1
τn p > 1/2

mainly AND

mainly OR
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τn+1 = 2pτn +O(τ2
n)

T ∼ lnW

− ln(2p)

Linearize around fixed points

Near the            fixed point for p<1/2 the 
linearized recursion relations are: 

τ = 0

τT ≈ 1/W

Let T be the time to saturation to all FALSE, 
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Time to saturation T as a function of circuit width W for 
various fractions p of OR gates.
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Slope of the logarithmic scaling of the saturation time vs. p.  
The solid line is the prediction,  -1/ln(2(1-p)).
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Critical point at p=1/2
The number of gates, Xn evaluating to TRUE 
at level n obeys a stochastic recursion 
relation, 

Here B(n,p) is a binomial random variable.

Xn+1 = B(W, Xn/W )

After taking the continuum limit, one obtains a 
diffusion process with absorbing endpoints and a 
diffusion coefficient that vanishes at the endpoints.
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Critical Saturation Time

Using known results for mean first passage times with 
the spatially non-uniform diffusion coefficient

we obtain a linear saturation time:

D(x) =
x

2
(1− x

W
)

T = −2W [τ0 ln τ0 + (1− τ0) ln(1− τ0)]
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T = −2W [τ0 ln τ0 + (1− τ0) ln(1− τ0)]

   τ0

            2

Slope of the linear scaling of the saturation time vs. W.  
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Summary for two input gates

• For p != 1/2

T ∼ lnW
Circuit evaluation easy

Circuit evaluation hard

p = 1/2

T ∼W

• For 
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k >2
• For p<1/k or p>1-1/k have T ~ ln W ➜ 

Fast circuit evaluation.

• For 1/k < p < 1-1/k have non-trivial fixed 
point:

Circuit does not saturate to a single 
value except via a large deviation ➜ 
Slow circuit evaluation.  

0 < τ∗ < 1
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Generating Circuit+Solution Pairs

• Q: How difficult is it to simultaneously 
generate an instance of random monotone 
CVP together with its evaluation?

• A: For any values of the parameters, a random 
instance chosen from the correct distribution and its 
evaluation can be generated in polylog parallel time 
on a PRAM. 
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Fast Parallel Sampling of Circuit
+Evaluation Pairs

• Idea: In parallel generate an instance of each level--
gates and their inputs and outputs--then put the 
levels together into a complete circuit+evaluation.

• Difficulty: Inputs to layer n+1 are not known until layer 
n is evaluated. 

• Solution: The number of TRUE inputs is all that is 
required to generate a random level. In parallel 
construct W+1 instances of each level, one for each 
number of TRUE inputs. 
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Construct one level

V

V

V

2 TRUE, 1 FALSE

T FF

Given:
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Attaching levels into a circuit+evaluation
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Wiring the circuit
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Conclusion

• Parallel computational complexity 
provides a unique perspective on 
models in statistical physics.

• Simple methods yield interesting results 
for random ensembles of CVP revealing 
phase transitions in complexity.

• Although CVP is hard to solve in 
parallel, it is easy to generate random 
instances and solutions simultaneously.
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